Exchange rings having stable range one

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exchange Rings Having Stable Range One

We investigate the sufficient conditions and the necessary conditions on an exchange ring R under which R has stable range one. These give nontrivial generalizations of Theorem 3 of V. P. Camillo and H.-P. Yu (1995), Theorem 4.19 of K. R. Goodearl (1979, 1991), Theorem 2 of R. E. Hartwig (1982), and Theorem 9 of H.-P. Yu (1995). 2000 Mathematics Subject Classification. Primary 16E50, 19B10. An ...

متن کامل

A Note on Rings of Weakly Stable Range One

It is shown that if R and S are Morita equivalent rings then R has weakly stable range 1 (written as wsr(R) = 1) if and only if S has. Let T be the ring of a Morita context (R,S,M,N,ψ, φ) with zero pairings. If wsr(R) = wsr(S) = 1, we prove that T is a weakly stable ring. A ring R is said to have weakly stable range one if aR + bR = R implies that there exists a y ∈ R such that a + by ∈ R is ri...

متن کامل

Quasi-Duo Rings and Stable Range Descent

In a recent paper, the first author introduced a general theory of corner rings in noncommutative rings that generalized the classical theory of Peirce decompositions. This theory is applied here to the study of the stable range of rings upon descent to corner rings. A ring is called quasi-duo if every maximal 1-sided ideal is 2-sided. Various new characterizations are obtained for such rings. ...

متن کامل

Prey-Predator System; Having Stable Periodic Orbit

The study of differential equations is useful in to analyze the possible past or future with help of present information. In this paper, the behavior of solutions has been analyzed around the equilibrium points for Gause model. Finally, some results are worked out to exist the stable periodic orbit for mentioned predator-prey system.

متن کامل

Bézout rings with almost stable range 1 Warren

Elementary divisor domains were defined by Kaplansky [I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949) 464–491] and generalized to rings with zero-divisors by Gillman and Henriksen [L. Gillman, M. Henriksen, Some remarks about elementary divisor rings, Trans. Amer. Math. Soc. 82 (1956) 362–365]. In [M.D. Larsen, W.J. Lewis, T.S. Shores, Elementary divisor rings a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2001

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s016117120100552x